If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+15=96
We move all terms to the left:
3y^2+15-(96)=0
We add all the numbers together, and all the variables
3y^2-81=0
a = 3; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·3·(-81)
Δ = 972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{972}=\sqrt{324*3}=\sqrt{324}*\sqrt{3}=18\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{3}}{2*3}=\frac{0-18\sqrt{3}}{6} =-\frac{18\sqrt{3}}{6} =-3\sqrt{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{3}}{2*3}=\frac{0+18\sqrt{3}}{6} =\frac{18\sqrt{3}}{6} =3\sqrt{3} $
| (3x+14)=(4x+24) | | -13=-x-39 | | 5a-7=-5a+6 | | 0.50x+0.45(70)=35.5 | | 3(2x+8)=-45+15 | | -x/7=-10.4 | | -0.2=s+(-0.8) | | 70-8x=90 | | 2^2x+2=2^15 | | (9r-3)+6;r=3 | | 5(x+2)-4x=3(x-1)-9x | | 56x=61 | | 2x=3x-8+22 | | -4=x2-4x | | 10x^2+3x-20=0 | | -8(k-1)+4=7(-k+3) | | (10x)-25=75 | | -4=x2+4x | | 3g²-12g=4 | | 4(2x−7)=112 | | (9x-39)-(3x+10)=47 | | y2−8y+1=0 | | 3=x2+2x | | 2(x-3)-1=13 | | 2x=18+4x5x | | (2y+21)+(5y+6)=90 | | -22/9+3/2m=-5/2m+1/3m | | 5x+2-7=-15 | | 12x-4+x=5x-4+7x | | 9-7c=-13 | | 6x2+2x-4=0 | | 4=x2 |